
How Children Form 
Mathematical Concepts 

Describing some remarkable experin�ents which the reader, �f he has 

a su�ject handy-, lnay- perfonn himse�f. An�ong other things the.r show 

that in a child the historical developlnent of geometry- is reversed 

I
t is a great mistake to suppose that a 

child acquires the notion of number 
and other mathematical concepts 

just from teaching. On the contrary, to 
a remarkable degree he develops them 
himself, independently and spontane
ously. When adults try to impose mathe
matical concepts on a child prematurely, 
his learning is merely verbal; true under
standing of them comes only with his 
mental growth. 

This can easily be shown by a simple 
experiment. A child of five or six may 
readily be taught by his parents to name 
the numbers from 1 to 10. If 10 stones 
are laid in a row, he can count them 
correctly. But if the stones are rear
ranged in a more complex pattern or 
piled up, he no longer can count them 
with consistent accuracy. Although the 
child knows the names of the numbers, 
he has not yet grasped the essential idea 
of number: namely, that the number of 
objects in a group remains the same, is 
"conserved," no matter how they are 
shuffled or arranged. 

On the other hand, a child of six and 
a half or seven often shows that he has 
spontaneously formed the concept of 
number even though he may not yet 
have been taught to count. Given eight 
red chips and eight blue chips, he will 
discover by one-to-one matching that 
the number of red is the same as the 
number of blue, and he will realize that 
the two groups remain equal in number 
regardless of the shape they take. 

The experiment with one-to-one cor
respondence is very useful for investigat
ing children's development of the num
ber concept. Let us lay down a row of 
eight red chips, equally spaced about an 
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inch apart, and ask our small subjects to 
take from a box of blue chips as many 
chips as there are on the table. Their re
actions will depend on age, and we can 
distinguish three stages of development. 
A child of five or younger, on the aver
age, will lay out blue chips to make a row 
exactly as long as the red row, but he 
will put the blue chips close together 
instead of spacing them. He believes the 
number is the same if the length of the 
row is the same. At the age of six, on the 
average, children arrive at the second 
stage; these children will lay a blue chip 
opposite each red chip and obtain the 
correct number. But they have not neces
sarily acquired the concept of number 
itself. If we spread the red chips, spac
ing out the row more 'loosely, the six
year-aids will think that the longer row 
now has more chips, though we have 
not changed the number. At the age of' 

six and a half to seven, on the average, 
children achieve the third stage: they 
know that, though we close up or space 
out one row of chips, the number is still 
the same as in the other. 

In a similar experiment a child is given 
two receptacles of identical shape and 
size and is asked to put beads, one at a 
time, into both receptacles with both 
hands simultaneously-a blue bead into 
one box with his right hand and a red 
bead into the other with his left hand. 
When he has more or less filled the two 
receptacles, he is asked how they com
pare. He is sure that both have the same 
number of beads. Then he is requested 
to pour the blue beads into a receptacle 
of a different size and shape. Here again 
we see differences in understanding ac
cording to age. The smallest children 
think that the number has changed: if, 
for instance, the beads fill the new re-

Experiment with chips demonstrates the development 0/ the concept 0/ number by children from the 
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ceptacle to a higher level, the�' think 
there are more beads in it than in the 
original one; if to a lower level, they 
think there are fewer. But children near 
the age of seven know that the transfer 
has not changed the number of beads. 

In short, children must grasp the prin-
ciple of conservation of quantity be

fore they can develop the concept of 
number. Now conservation of quantity 
of course is not in itself a numerical no
tion; rather, it is a logical concept. Thus 
these experiments in child psychology 
throw some light on the epistemology of 
the nuil1ber concept-a subject which has 
been examined by many mathematicians 
and logiCians. 

The mathematicians Henri Poincare 
and L. E. J. Brouwer have held that the 
number concept is a product of primi
tive intuition, preceding logical notions. 
The experiments just described deny this 
thesis, in our opinion. Bertrand Russell, 
on the other hand, has supported the 
view that number is a purely logical 
concept: that the idea of cardinal num
ber derives from the logical notion of 
category (a number would be a category 
made up of equivalent categories) while 
the notion of ordinal number derives 
from the logical relationships of order. 
But Russell's theory does not quite fit 
the psychological processes as we have 
observed them in small children. Chil
ell'en at the start make no distinction be
tween cardinal and ordinal number, and 
besides, the concept of cardinal number 
itself presupposes an order relationship. 
For instance, a child can build a one-to
one correspondence onlv if he neither 
forgets any of the elements nor uses the 
same one twice. The only way of dis
tinguishing one unit from another is to 
consider it either before or after the oth-

er in time or in space, that is, in the order 
of enumeration. 

Study of the child's discovery of 
spatial relationships-what may be c

'
alled 

the child's spontaneous geometry-is no 
less rewarding than the investigation of 
his number concepts. A child's order of 
development in geometry seems to re
verse the order of historical discovery. 
Scientific geometry began with the 
Euclidean system (concerned with fig
ures, angles and so on), developed in 
the 17th century the so-called projective 
geometry (dealing with problems of per
spective) and finally came in the 19th 
century to topology (describing spatial 
relationships in a general qualitative 
way-for instance, the distinction be
tween open and closed structures, in
teriority and exteriority, proximity and 
separation). A child begins with the last: 
his first geometrical discoveries are 
topological. At the age of three he read
ily distinguishes between open and 
closed figures: if you ask him to copy a 
square or a triangle, he draws a closed 
circle; he draws a cross with two sepa
rate lines. If you show him a drawing 
of a large circle with a small circle inside, 
he is quite capable of reproducing this 
relationship, and he can also draw a 
small circle outside or attached to the 
edge of the large one. All this he can do 
before he can draw a rectangle or ex
press the Euclidean characteristics 
(number of sides, angles, etc.) of a fig
ure. Not until a considerable time after 
he has mastered topological relationships 
does he begin to develop his notions of 
Euclidean and projective geometry. 
Then he builds those simultaneously. 

Curiously enough, this psychological 
order is much closer to modern geome
try's order of deductive or axiomatic 
construction than the historical order of 

discovery was. It offers another example 
of the k.inship between psychological 
construction and the logical construction 
of science itself. 

T et us test our young subjects on pro· 
L jective constructions. First we set up 
two "fence posts" (little sticks stuck in 
bases of modeling clay) some 15 inches 
apart and ask the child to place other 
posts in a straight line between them. 
The youngest children (under the age 
of four) proceed to plant one post next 
to another, forming a more or less wavy 
line. Their approach is topological: the 
elements are joined by the simple rela
tionship of proximity rather than by pro
jection of a line as such. At the next 
stage, bevond the age of four, the child 
may form a straight fence if the two 
end posts parallel the edge of the table, 
or if there is some other straight line to 
guide him. If the end posts are diagonal
ly across the table, he may start building 
the line parallel to the table's edge and 
then change direction and form a curve 
to reach the second post. OccaSionally a 
youngster may make a straight line, but 
he does so only by trial-and-error and 
not by system. 

At the age of seven years, on the aver
age, a child can build a straight fence 
consistently in any direction across the 
table, and he will check the straightness 
of the line by shutting one eye and Sight
ing along it, as a gardener lines up bean 
poles. Here we have the essence of the 
projective concept; the line is still a 
topological line, but the child has 
grasped that the projective relationship 
depends on the angle of vision, or point 
of view. 

One can proceed to study this with 
other experiments. For instance, you 
stand a doll on a table and place before 

lIge 0/ five or younger (hands allefl), through six (center) to six and II hlll/ or seven (right). The experi,;,ent is described in detail in the te .• t. 
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Nuclear's versatile Model 05-1 Scintillaeion 
pete.ctor �s c;lesigned for eBicient gamma count-
101; 10. chn�cal and laboratory applications . 
Shl.eldlng IS arranged to provide excellent 
rauos of background to source counts when 
used �ith �he directional shield. or to aCt as a 
less directional detector when this shield is 
rem�yed. EBi.ciencies of 33 % or greater are 
�btalOable uSing C060 wlCh the external shield 
�n place. Plateau length of the Model 05-1 
15 200 volts or more. 

Model OS·1 can be used with almost any 
G·M scaler or count rate meter. since its oue
put pulse is greater than .25 volt. It is avail
able separately as an extremely sensitive de
tector, with a special lead shield for sample 
couneing. oc as part of a mobile couo[ rate 
m�tec. (Nuc1ea.c·s "Is�tcon") for clinical ap
plicatIOns. Write for Information and orices. 
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The weIl- type scintillation counter is un
surpassed for counting liquid gamma emit
ting samples. Activities as low as 0.0000 1 
microcurie can be assayed with the DS·3. 
making determinations of blood volume, 
protein bound iodine (PBI). or red blood 
cell mass possible without the use of large 
tracer doses. The instrument is relatively 
insensitive to variations in sample volume 
less than 2 c� . 

Samples can be placed in standard test 
tubes or vials and then insened. directly 
into the well of the crystal. Since the crys· 
tal almost completely surrounds the sam
ple, overall efficiencies as high as 8S % may 
be obtained. Write for (urrher information 
and price. 
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Child of three draws this but not rectangle 

it an object oriented in a certain direc
tion: a pencil lying crosswise, diagonal
ly or lengthwise with respect to the 
doll's line of vision, or a watch lying flat 
on the table or standing up. Then you 
ask the child to draw the doll's view of 
the object, or, better still, ask him to 
choose from two or three drawings the 
one that represents the doll's point of 
view. Not until the age of about seven 
or eight can a child deduce correctly the 
doll's angle of vision. 

A similar experiment testing the same 
point yields the same conclusions. Ob
jects of different shapes are placed in 
various positions between a light and a 
screen, and the child is asked to predict 
the shape of the shadow the object will 
cast on the screen. 

Ability to coordinate different per
spectives does not come until the age of 
9 or 10. This is illustrated by an experi
ment I suggested some time ago to my 
collaborator Dr. Edith Meyer. The ex
perimenter sits at a table opposite the 
child, and between the child and herself 
she places a cardboard range of moun
tains. The two see the range from oppo
site perspectives. The child is then asked 
to select from several drawings the ones 
that picture both his own and the oppo
site person's views of the mountain 
range. Naturally the youngest children 
can pick out only the picture that cor
responds to their own view; they 
imagine that all the pOints of view are 
like their own. What is more interesting, 
if the child changes places with the ex
perimenter and sees the mountains from 
the other side, he now thinks that his 
new view is the only correct one; he can
not reconstruct the point of view that 
was his own just a little while before. 
This is a clear example of the egocentric
ity so characteristic of children-the 
primitive reasoning which prevents them 
from understanding that there may be 
more than one point of view. 

It takes a considerable evolution for 
children to come, at around the age of 

9 or 10, to the ability to distinguish be
tween and coordinate the different pos
sible perspectives. At this stage they can 
grasp projective space in its concrete or 
practical form, but naturally not in its 
theoretical aspects. 

� the same time the child forms thE 
concept of projective space, he also 

constructs Euclidean space; the two 
kinds of construction are based upon one 
another. For example, in lining up a 

straight row of fence posts he may not 
only use the sighting method but may 
line up his hands parallel to each other 
to give him the direction. That is, he is 
applying the concept of conservation of 
direction, which is a Euclidean princi
ple. Here is another illustration of the 
fact that children form mathematical 
notions on a qualitative or logical basis. 

The conservation principle arises in 
various forms. There is first the conserva
tion of length. If you place a block on 
another of the same length and then 
push one block so that its end projects 
beyond the other, a child under six will 
suppose that the two blocks are no 
longer of equal length. Not until near the 
age of seven, on the average, does the 
child understand that what is gained at 
one end of the block is lost at the other. 
He arrives at this concept of the conser
vation of length, be it noted, by a process 
of logic. 

Experiments on a child's discovery of 
the conservation of distance are especial
ly illuminating. Between two small toy 
trees standing apart from each other on 
a table you place a wall formed of a 
block or a thick piece of cardboard, and 
you ask the child (in his own language, 
of course) whether the trees are still 
the same distance apart. The smallest 
children think the distance has changed; 
they are simply unable to add up two 
parts of a distance to a total distance. 
Children of five or six believe the dis
tance has been reduced, claiming that 
the width of the wall does not count as 
distance; in other words, a filled-up 
space does not have the same value as 
an empty space. Only near the age of 
seven do children come to the realiza
tion that intervening objects do not 
change the distance. 

However you test them, you find the 
same thing true: children do not appre
ciate the principle of

· 
conservation of 

length or surface until, somewhere 
around the age of seven, they discover 
the reversibility that shows the original 
quantity has remained the same (e.g., 
the realignment of equal-length blocks, 
the removal of the wall, and so on) . Thus 
the discovery of logical relationships is a 
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prerequisite to the construction of geo
metrical concepts, as it is in the fonna
tion of the concept of number. 

This applies to measurement itseli, 
which is only a derived concept. It 

is interesting to study how children 
spontaneously learn to measure. One of 
my collaborators, Dr. Inhelder, and I 
have made the following experiment: 
'Ve show the child a tower of blocks on 
a table and ask him to build a second 
tower of the same height on another 
table (lower or higher than the first) 
with blocks of a different size. Naturally 
we provide the child with all the neces
sary measuring tools. Children's at
tempts to deal with this problem go 
through a fascinating evolution. The 
youngest children build up the second 
tower to the same visual level as the first, 
without worrying about the difference 
in height of the tables. They compare 
the towers by stepping back and sighting 
them. At a slightly more advanced stage 
a child lays a long rod across the tops 
of the two towers to make sure that they 
are level. Somewhat later he notices that 
the base of his tower is not at the same 
level as the model's. He then wants to 
place his tower next to the model qn the 
same table to compare them. Reminded 
that the rules of the game forbid him to 
move his tower, he begins to look around 

f 
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for a measuring standard. Interestingly 
enough, the first that comes to his mind 
is his own body. He puts one hand on 
top of his tower and the other at its base, 
and then, trying to keep his hands the 
same distance apart, he moves over to 
the other tower to compare it. Children 
of about the age of six often carry out 
this work in a most assured manner, as 
if their hands could not change position 
on the way! Soon they discover that the 
method is not reliable, and then they re
sort to reference points on the body. The 
child will line up his shoulder with the 
top of his tower, mark the spot opposite 
the base on his thigh with his hand and 
walk over to the model to see whether 
the distance is the same. 

Eventually the idea of an indepen
dent measuring tool occurs to the child. 
His first attempt in this direction is like
ly to be the building of a third tower 
next to and the same height as the one 
he has already erected. Having built it, 
he moves it over to the first table and 
matches it against the model; this is 
allowed by the rules. The child's arrival 
at this stage presupposes a process of 
logical reasoning. If we call the model 
tower A, the second tower C and the 
movable tower B, the child has reasoned 
that B=C and B=A, therefore A=C. 

Later the child replaces the third 
tower with a rod, but at first the rod must 

Child of seven stmigh"''''s a row of "fence posts" by sighting along them 

plas'-ti -uiz-er 
That which is added to a 
substance to impart softness, 

flexibility and resiliency. 

Example: GLYCERINE! 
Did you know Glycerine keeps ad
hesi ves flexible, makes the liners 
of bottle caps resilient, and pre
vents cellophane from becoming 
brittle? Glycerine also keeps 
beauty creams, ointments, and 
other cosmetic preparations from 
drying out or peeling off. Your 
toothpaste and shaving cream 
squeeze smoothly because they 
contain Glycerine. Glycerine is 
nontoxic, nonvolatile, and ex
tremely versatile. 

If you're looking for plasticity 
in a product, check Glycerine's 
possibilities. 

New Sausage Casing 
For example, a midwestern pack
aging company is using Glycerine 
to plasticize a new type of sausage 
casing. It is the first coated cellu
lose casing for liver sausage that 
controls moisture vapor transmis
sion during processing and stor
age. The material is opaque and 
permits sharp, multi-color print
ing. Consumers will benefit be
cause it provides retention of orig
inal flavor and reduces surface 
crusting, discoloration, and loss of 
weight through shrinkage. 

Balance of Properties 
But Glycerine's ability to act as a 
plasticizer is only parl of the story. 
You can count on versatile Glyc
erine to serve as -

humectant 
solvent 
vehicle 
sweetener 

lubricant 
demulcent 
suspending agent 
chemical intermediate 

Booklets on the application of Glyc
erine in the drug and coslnetic, food , 
protective coatings, and textile fields 
are (lvailable. For your copy, writ" to 
Dept. S, Glycerine Producers' A"so
ciation, 29.5 Madison Avenue, New 
Yor" 17, N. Y. 
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There are thousands of engineers, 
chemists, research physicists and 
heating contractors who daily take 
"palm readings" to accurately deter
mine air velocities everywhere. They 
rely on the Alnor Velometer Jr., no 
larger than your palm, accurate 
within laboratory tolerances. 

This instrument is precisely built 
for instantaneous and accurate 
measurement-with double-pivoted, 
double-jeweled movement, air
actuated pointer vane, and sturdy 
bakelite case. This handy, direct
reading instrument can be one of your 
most useful tools for years to come. 
Available in single or double scale 
ranges to 2500 f.p.m. 

You'll find these same qualities of 
speed, portability and accuracy 
identify all Alnor precision instru
ments such as: the PYROCON, a 
handy portable instrument for quick, 
accurate reading of surface tempera
tures • • •  of any material, any shape. 
The Alnor DEWPOINTER that elim
inates the guesswork of dew point 
determination-you actually see 

when the dew point has been reached. 
Completely self-contained and port
able, this instrument brings you 
laboratory accuracy anywhere in the 
field or plant. 

Send today for complete informa
tion on the Alnor instrument to help 
you accurately measure temperature, 
air velocity or dew point. Write to: 
Illinois Testing Laboratories, Inc., 
Room 548, 420 N. La Salle St., 
Chicago 10, III. 
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Child of six measures the height of a tower of blocks with her body 

be just the same length as the height of 
the tower to be measured. He then con
ceives the idea of using a longer rod and 
marking the tower height on it with his 
finger. Finally, and this is the beginning 
of true measurement, he realizes that he 
can use a shorter rod and measure the 
height of the tower by applying the rod 
a certain number of times up the side. 

The last discovery involves two new 
operations of logic. The first is the proc
ess of division which permits the child 
to conceive that the whole is composed 
of a number of parts added together. 
The second is the displacement, or sub
stitution, which enables him to apply one 
part upon others and thus to build a sys
tem of units. One may therefore say that 
measurement is a synthesis of division 
into parts and of substitution, just as 

number is a synthesis of the inclusion 
of categories and of serial order. But 
measurement develops later than the 
number concept, because it is more diffi
cult to divide a continuous whole into 
interchangeable units than to enumerate 
elements which are already separate. 

To study measurement in two dimen-
sions, we give the child a large sheet 

of paper with a pencil dot on it and ask 
him to put a dot in the same position 
on another sheet of the

' 
same size. He 

may use rods, strips of paper, strings, 
rulers or any other measuring tools he 
needs. The youngest subjects are satis
fied to make a visual approximation, 
using no tools. Later a child applies a 

measuring tool, but he measures only 
the distance of the point from the side 
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or bottom edge of the paper and is sur
prised that this single measurement does 
not give him the correct position. Then 
he measures the distance of the point 
from a corner of the paper, trying to 
keep the same slant (angle) when he 
applies the ruler to his own sheet. Final
ly, at about the age of eight or nine, he 
discovers that he must break up the 
measurement into two operations: the 
horizontal distance from a side edge and 
the perpendicular distance from the bot
tom or top edge. Similar experiments 
with a bead in a box show that a child 
discovers how to make three-dimension
al measurements at about the same age. 

Measurement in two or three dimen
sions brings us to the central idea of 
Euclidean space, namely the axes of co
ordinates-a system founded on the 
horizon tality or verticality of physical 
objects. It may seem that even a baby 
should grasp these concepts, for after all 
it can distinguish between the upright 
and lying-down positions. But actually 
the representation of vertical and hori
zontal lines brings up quite another prob
lem from this subjective awareness of 
postural space. Dr. Inhelder and I have 
studied it with the following experi
ments: Using a jar half-filled with col
ored water, we ask our young subjects 
to predict what level the water will take 
":hen the jar is tipped one way or an
other. Not until the age of nine, on the 
average, does a child grasp the idea of 
horizontality and predict correctly. 
Similar experiments with a plumb line 
or a toy sailboat with a tall mast demon
strate that comprehension of verticality 
comes at about the same time. The child's 
tardiness in acquiring these concepts 
is not really surprising, for they require 
not only a grasp of the internal relation
ships of an object but also reference to 
external elements (e.g., a table or the 
floor or walls of the room) . 

When a child has discovered how to 
construct these coordinate axes by 

reference to natural objects, which he 
does at about the same time that he con
ceives the coordination

" 
of perspectives, 

he has completed his conception of how 
to represent space. By that time he has 
developed his fundamental mathemati
cal concepts, which spring spontaneous
ly from his own logical operations. 

The experiments I have described, 
simple as they are, have been surprising
ly fruitful and have brought to light 
many unexpected facts. These facts are 
illuminating from the psychological and 
pedagogical points of view; more than 
that, they teach us a number of lessons 
about human knowledge in general. 

%" single spider gear type differential with Zerol 

gears and Micro bearings makes for low friction 

with 'back-lash' tolerances such that the most 

rigid requirements of computer and control systems 

are satisfied. Differentials of this kind are used 

by Ford Instrument Company in systems for all 

phases of designs and production of Navigation, 

Gunfire and Guided Missile control and/or posi
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